
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Jan Čurn
Distribution for Open Modelling Interface and Environment

Katedra softwarového inženýrství
Vedoucí diplomové práce: Doc. Ing. Petr Tůma, Dr.
Studijní program: Informatika, Softwarové systémy,

 Architektura a principy systémového prostředí

 2

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použitím citovaných pramenů. Souhlasím se zapůjčováním práce.

V Praze dne 10.8.2007

Jan Čurn

 3

 4

Table of Contents
1. Overview... 10
2. Introduction to OpenMI .. 12

2.1. Linkable Component... 12
2.2. OMI File.. 14
2.3. Model Linkage .. 14
2.4. Computation.. 15
2.5. Events.. 16

3. Distribution of Computation ... 17
3.1. Concept ... 17
3.2. Use Cases .. 17
3.3. Remote Procedure Call ... 18
3.4. Model Provision and Access... 19
3.5. Platform... 20

4. Making Linkable Components Remotable ... 21
4.1. Remote Linkable Component ... 21
4.2. Model Provider ... 21
4.3. Authorization .. 22
4.4. Object Serialization... 22
4.5. Object Deposit .. 24
4.6. Model Linkage .. 26
4.7. Event Callback.. 26
4.8. Threading .. 27

4.8.1. Reserved Worker Thread .. 29
4.8.2. Nested Remote Calls... 29

5. Integrating Server Model .. 31
5.1. Clients Management ... 31
5.2. Remote Calls Forwarding ... 33
5.3. Model Provision.. 34
5.4. Model Access.. 34

6. Communication Protocol .. 35
6.1. Requirements .. 35
6.2. Protocol Comparison .. 36

 5

6.3. YA-RPC.. 36
6.3.1. Server Objects and Methods ... 37
6.3.2. Remote Calls... 37
6.3.3. Serialization .. 38
6.3.4. Asynchronous Remote Calls Forwarding ... 38
6.3.5. Performance .. 39
6.3.6. Execution of Nested Calls in Causal Thread .. 39
6.3.7. Single Thread Worker Queue ... 41
6.3.8. Proxy and Stub Helpers .. 41

7. Performance .. 43
7.1. Direct Model Linkage ... 43

7.1.1. Server-side Model Linkage... 43
7.1.2. Client-side Model Linkage ... 44

7.2. Caching and Piggybacking ... 44
7.3. Intelligent Event Forwarding .. 46

8. Deployment... 48
8.1. Client... 48
8.2. Server .. 49
8.3. Tester... 50
8.4. User Documentation ... 51

9. Conclusion .. 52
10. Future Work .. 54
11. References... 56

List of Figures
Figure 1 Basic concept of the remote access to the models .. 19
Figure 2 Serialization and deserialization of OpenMI objects 23
Figure 3 Usage of object deposit... 25
Figure 4 Link between local and remote model .. 26
Figure 5 Synchronous event handling... 27
Figure 6 Integrating server model ... 31
Figure 7 Model provider and event receiver forwarders... 33
Figure 8 Execution of nested method calls in YA-RPC.. 40

 6

Figure 9 Server-side direct model linkage .. 43
Figure 10 Client-side direct model linkage ... 44
Figure 11 Distributed OpenMI client application ... 49
Figure 12 Distributed OpenMI server configuration tool ... 50

List of Tables
Table 1 Methods and properties of ILinkableComponent interface........................... 13
Table 2 Methods of IDiscreteTimes interface.. 14
Table 3 Methods of IManageState interface.. 14
Table 4 Methods of IInputExchangeItem interface.. 15
Table 5 Methods of IOutputExchangeItem interface... 15
Table 6 Methods of ILink interface.. 15
Table 7 Methods of IListener interface.. 16
Table 8 OpenMI objects transported over network ... 24
Table 9 Fixed objects in OpenMI .. 25
Table 10 Methods of IServer interface .. 32
Table 11 The comparison of RPC protocols.. 36
Table 12 Caching and piggybacking for linkable component methods and properties46

 7

 8

Abstract
Název práce: Distribuce pro Open Modelling Interface and Environment
Autor: Jan Čurn
Katedra: Katedra softwarového inženýrství
Vedoucí diplomové práce: Doc. Ing. Petr Tůma, Dr.
E-mail vedoucího: petr.tuma@mff.cuni.cz
Abstrakt:

OpenMI je standard pro propojování simulačních modelů vody a životního
prostředí. Standard a v současnosti dostupný podpůrný software ovšem podporuje pouze
simulace běžící na jednom počítači, v jednom vlákně.

Cílem práce bylo vytvoření systému schopného propojovat OpenMI modely běžící
na různých počítačích pomocí síťového podsystému. Systém se skládá z uzlových serverů,
které poskytují přístup k modelům registrovaným klienty. Klienti zpřístupňují své lokální
modely serverům a také umožňují stávajícímu OpenMI softwaru transparentně
přistupovat ke vzdáleným modelům registrovaným jinými uživateli.
Klíčová slova: OpenMI, distribuovaný systém, integrující server

Title: Distribution for Open Modelling Interface and Environment
Author: Jan Čurn
Department: Department of Software Engineering
Supervisor: Doc. Ing. Petr Tůma, Dr.
Supervisor's e-mail address: petr.tuma@mff.cuni.cz
Abstract:

OpenMI is a standard used to link water and environmental models. However, the
standard and the currently available supporting software only support single-computer
single-threaded simulations.

The thesis delivers a system capable of linking OpenMI models across computers
using their network subsystem. The system consists of hub servers that provide access to
models registered by clients. The clients make local models accessible to the servers and
also provide the legacy OpenMI software with a transparent access to remote models
registered by other clients.
Keywords: OpenMI, distributed system, integrating server model

 9

mailto:petr.tuma@mff.cuni.cz
mailto:petr.tuma@mff.cuni.cz

1. Overview

OpenMI is European standard (see [Omi05]) for linkage of computational models
in domain of water and environment. As defined by the OpenMI Standard, the models are
independent software components (objects), accessible using well-known interfaces.
OpenMI also provides set of tools enabling users to link the models and run the
simulations on them. Currently, OpenMI is designed for a single-computer environment.
The models may internally utilize any remote resources on different computers; however,
there is no standardized way how to link OpenMI models running on different computers.

The goal of this thesis is to deliver a system, which will enable users to link any
OpenMI models running on different computers. The system consists of hub servers and
clients. The servers are used to intermediate communication between clients, and to
register the models provided by clients. The clients make local models accessible to the
servers and also provide the legacy OpenMI software with a transparent access to remote
models registered by other clients.

The OpenMI simulation uses pull-driven mechanism, which means that one
model invokes methods of another inter-linked model, which may then invoke methods
of another model etc. As defined by the OpenMI Standard, all calls between models are
synchronous, i.e. run in single thread of execution. Several models depend on this aspect
and behave incorrectly if their methods are called from different threads.

In fact, our task is to distribute the single-thread call-stack to several computers,
whilst using the integrating server model. The OpenMI Standard has not been designed to
simplify remote access to models, so there are several issues which prevent simple
adoption of common remoting techniques. Next challenge is to integrate or implement
right communication protocol, since our distributed system poses quite complex
requirements on it. Considerable task is also to optimize the overall performance of the
system.

The outline of the text is following: Section 2 gives a brief introduction to such
parts of the OpenMI standard that are necessary to understand the further text. Section 3
describes the basic ideas behind our distributed system and discusses its use cases.
Section 4 then in detail describes the components of the system and how they interact
with each other. Next, Section 5 introduces the concept of integrating server and
discusses how it can be incorporated in our system. Section 6 discusses what
communication protocol has been used and why. In Section 7 we explain the performance

 10

optimizations which have been necessary to speed-up the distributed OpenMI
computation. Section 8 briefly describes the particular software components of our
implementation. Last sections of the thesis conclude the work done (Section 9), suggest
the possible future work (Section 10) and list the used literature (Section 11).

 11

2. Introduction to OpenMI

This section gives a brief introduction to the OpenMI Standard (see [Omi05]),
which is necessary to understand the further text. The readers already familiar with the
standard may skip this section.

OpenMI is a shortcut for Open Modelling Interface and Environment, a standard
for model linkage in the domain of water and environment. The OpenMI Standard
defines the set of interfaces, which enable computational models to interact with each
other. The standard is very generic allowing the linkage of different kinds of models from
different disciplines like atmosphere processes, rainfall-runoff, river hydraulics, flooding,
sewerage, water distribution, fishing …etc. The OpenMI interfaces are not bound to a
particular platform, generally, component written in any language, running on any
platform, may be OpenMI compliant, if it fulfils the requirements defined by the
standard. However, the primary platform for which the implementation of OpenMI
interfaces is available, is Microsoft .NET Framework (currently, OpenMI version 1.2.0 is
targeted for .NET 2.0). The whole description of the OpenMI Standard may be found in
[Omi05].

Besides the interfaces, OpenMI provides a user interface application enabling the
users to link models and run the simulations (deployment software) and also delivers
supporting libraries which simplify the process of both development of new models and
migration of the legacy models to OpenMI, without the need of rewriting the cores of the
computational engines. This software is available only for Microsoft .NET Framework,
as well.

2.1. Linkable Component

Linkable component (LC) is elementary part of OpenMI. It represents a single
computational model, i.e. computational engine populated with the data. The access to
linkable component is abstracted using ILinkableComponent interface. Additionally, the
linkable component may implement IDiscreteTimes interface (to inform the callers that it
computes values in discrete time steps) and/or IManageState interface (to persist the state
of the computation). Table 1, Table 2 and Table 3 gives a brief description of all methods
of these interfaces:

 12

Method/property Description
Initialize Initializes the LC using array of arguments (IArgument).
ComponentID Gets the string identifying the computation engine.
ComponentDescription Gets the string with description of the computation engine.
ModelID Gets the string identifying the model (i.e. computation engine + data).
ModelDescription Gets the string with description of the model.
InputExchangeItemCount Gets number of input exchange items.
GetInputExchangeItem Gets the n-th input exchange item (IInputExchnageItem).
OutputExchangeItemCount Gets number of output exchange items.
GetOutputExchangeItem Gets the n-th output exchange item (IOutputExchangeItem).
TimeHorizon Gets simulation time horizon of this model (ITimeSpan).
AddLink Adds a single link (ILink) between this LC and other LC.
RemoveLink Removes specific link identified by its ID string.
Validate Checks whether the computation may start on this model, i.e. that Prepare

method can be called. If an error is encountered, the method returns a
string with description of that error.

Prepare Prepares the computation.
GetValues Gets the value for specific time (ITime) and output link (identified by ID

string). The call typically invokes the computation in the engine. The
GetValues method returns an instance of IValueSet interface.

EarliestInputTime Gets the earliest time (ITimeStamp), for which this LC needs input from
other inter-linked LCs. These LCs may use this property to clean their
internal buffers.

Finish Finishes the computation. The models typically write their result files to
disk when this method is called.

Dispose Releases all resources associated with the LC.
GetPublishedEventTypeCount Gets the number of events published by the LC.
GetPublishedEventType Gets the n-th published event type (EventType).
Subscribe Subscribes an event listener (IListener) to specific event type (EventType).
UnSubscribe Unsubscribes the event listener (IListener) to specific event type

(EventType).
SendEvent Sends the event (IEvent) to listeners subscribed for corresponding event

type.

Table 1 Methods and properties of ILinkableComponent interface

Method Description
HasDiscreteTimes Gets boolean value indicating that values of a specific combination

of quantity (IQuantity) and element set (IElementSet) are defined on
discrete time steps.

GetDiscreteTimesCount Gets the number of discrete time steps for specific combination of

 13

quantity (IQuantity) and element set (IElementSet).
GetDiscreteTime Gets the n-th discrete time step for specific combination of quantity

(IQuantity) and element set (IElementSet).

Table 2 Methods of IDiscreteTimes interface

Method Description
KeepCurrentState Saves the current state of LC and returns the ID string for that state.
RestoreState Restores the state identified by ID string.
ClearState Removes the state identified by ID string from the internal storage.

Table 3 Methods of IManageState interface

2.2. OMI File

In OpenMI, the model is described using OMI file. It is a XML file containing the
information which type implements the ILinkableComponent interface and in which
.NET assembly it resides. Additionally, OMI file contains arguments which must be
supplied to Initialize method to initialize the LC properly (e.g. a list of simulation input
files). Deployment software uses the information from OMI file to locate the assembly,
load it into the memory, instantiate the linkable component and initialize it using supplied
arguments.

2.3. Model Linkage

During the computation the inter-linked OpenMI models exchange the data with
each other. Exchange items define where and what data may be exchanged. More
precisely, single exchange item is a combination of element Set (IElementSet) saying
“where to exchange” and quantity (IQuantity) saying “what data to exchange”. For
example, in river hydraulics model, the element set may be a river cross-section and the
quantity may be a water discharge. The link from model A to model B is a combination
of one A’s output exchange item and one B’s input exchange item. The set of inter-linked
LCs is referred to as OpenMI composition.

An input exchange item is abstracted using IInputExchangeItem interface, an
output exchange item using IOutputExchangeItem interface. Table 4 and Table 5 show
properties and methods of these interfaces.

Method Description
Quantity Gets the information about what data will be exchanged (IQuantity).

 14

ElementSet Gets the information about where the data will be exchanged (IElementSet).

Table 4 Methods of IInputExchangeItem interface

Method Description
Quantity Gets the information about what data will be exchanged (IQuantity).
ElementSet Gets the information about where the data will be exchanged (IElementSet).
DataOperationCount Gets the number of data operations associated with this output exchange item.
GetDataOperation Gets the n-th data operation (IDataOperation).

Table 5 Methods of IOutputExchangeItem interface

The data operations defined by output exchange items are used to transform the
data produced by the model (e.g. linear transformation, spatial interpolation…). The list
of methods and properties of IQuantity, IElementSet and IDataOperation interfaces may
be found in the [Omi05]. For our purposes their further explanation is unnecessary.

To link two models, the AddLink method must be called on both source and target
LC, supplying an implementation of ILink interface as argument. Table 6 lists methods
and properties of this interface.

Method Description
ID Gets the ID string for the link.
Description Gets a string with description of the link.
SourceComponent Gets the source LC.
SourceElementSet Gets the source element set (IElementSet).
SourceQuantity Gets the source quantity (IQuantity).
DataOperationsCount Gets the number of data operations selected from source input exchange item.
GetDataOperation Gets the n-th selected data operation.
TargetComponent Gets the target LC.
TargetElementSet Gets the target element set.
TargetQuantity Gets the target quantity.

Table 6 Methods of ILink interface

2.4. Computation

Before the computation can start, Prepare method must be called on all LCs in
the composition. The computation is then triggered by invoking GetValues method on a
one of LCs. LC may then, in order to compute its result, invoke GetValues method on
other inter-linked LC, and so on. In OpenMI this is known as pull-driven mechanism.

 15

Important thing is that all GetValues calls are done synchronously in a single thread of
execution.

After computation finishes, the deployment software must call Finish method on
all LCs in the composition, so they may for example save the result files.

2.5. Events

The events system is kind of messaging between the OpenMI linkable
components and the external tools, and is a substantial part of the OpenMI standard.
Events allow the implementation of tools that perform tasks such as a logging, tracing, or
online visualization. Linkable components can generate events to which other linkable
components or tools can subscribe (using LC’s Subscribe method). The event listener
must implement IListener interface, Table 7 shows its methods:

Method Description
GetAcceptedEventTypeCount Gets the number of event types, which the listener wants to listen.
GetAcceptedEventType Gets the n-th listened event type (EventType).
OnEvent Called by LC to send an event to the listener .

Table 7 Methods of IListener interface

Events are handled, like the computation itself, synchronously. When event is sent
to a listener using OnEvent method, the listener grabs the thread’s call stack. This allows
listeners to implement for example pause functionality, or even listeners are able to
cancel the computation by throwing an exception.

 16

3. Distribution of Computation

In this section we introduce basic ideas behind the distribution of OpenMI
computation, and discuss the possible use cases.

The OpenMI models can internally utilize any resources on the network, or even
perform the calculation on a remote computer; however, there is no standardized way
how to combine OpenMI models running on different computers into a single OpenMI
composition. The aim of this thesis is development of a framework that will seamlessly
allow the distribution of arbitrary OpenMI compliant models to different computers and
run them in a single OpenMI composition, using standard OpenMI tools. In the following
text we will refer to this framework as Distributed OpenMI.

3.1. Concept

Basic idea is to have a framework with the ability to make OpenMI compositions
on the local computer including both local models and models running on remote
computers using existing OpenMI software and tools. All OpenMI compliant models may
be used as remote models and it should be transparent for other models whether they are
linked to a remote or local model.

Obviously, there are two types of clients in Distributed OpenMI: the clients who
provide the access to their local OpenMI models to other clients; and the clients who
access these models.

3.2. Use Cases

There are several situations where it is useful to link the models running on
different computers:

• Provide remote access to a large time series databases
The time series databases (storing e.g. sensor data, whether forecast …) may
be wrapped into OpenMI linkable components and provided to
computational models using Distributed OpenMI. The computation models
will only request the data, which they actually need for their computation.

• Deploy the simulation on the desktop, run it on a dedicated machine

 17

Client PC may only be a place from which the simulation is invoked and
monitored. The computation may run on dedicated high-performance
computer where the model actually resides.

• Link models from different providers without a need for moving data
Classical OpenMI approach necessitates moving all input data to a single
computer before running the simulation. If the amount of the data is big, the
preparation phase may bring significant performance overheads. Distributed
OpenMI allows running the models on the computers where the data is
available. Only the data necessary for the linkage will be transferred
between the computers.

• More effective usage of simulation software licenses
The commercial simulation software is very expensive, so the number of
installations customers can use is limited. It is inefficient to have all
simulation software installed on a single computer.

All previous situations may be solved in other ways; however, our concept
enables developers to use a simple framework to achieve these goals and protects them
from implementation of a complex distributed functionality.

3.3. Remote Procedure Call

OpenMI is an object oriented system, the computation consists of method calls
between the objects representing inter-linked models and thus a natural approach how to
distribute the computation is to use Remote Procedure Call (RPC). There are many
implementations of remote procedure calls; the paper [Bir83] gives general background
about implementation of RPC. RPC will be used to invoke the methods of original
Linkable Component (LC) on a particular client.

Our distributed system aims to be OpenMI compliant, so any changes in the
existing OpenMI models providing the remote access to other models are not acceptable.
The only entity, which can be linked to existing LC, is other LC. This naturally implies
that we have to encapsulate the RPC client functionality into a special LC, which can be
seamlessly linked to existing LCs. In our system, we introduced Remote Linkable
Component (RLC) to proxy the method calls to original LC on a remote side.

On the other hand, it is useful to introduce additional layer between original LC
and RPC server subsystem. In Distributed OpenMI the Model Provider (MP) component

 18

is used to receive remote calls from the RPC subsystem and to forward them to original
LC. Moreover, this layer allows us to implement functionality like authorization (see
Section 4.3), direct local model linkage and piggybacking (see Section 7).

Figure 1 Basic concept of the remote access to the models

3.4. Model Provision and Access

OpenMI models are described using OMI files, thus the Distributed OpenMI
clients, who provide the access to their local models, must able to register these models
using the OMI files. On the other side, the accessing client must have special OMI file
holding all the information needed by Distributed OpenMI system to connect to the
providing client and access a particular model.

On the start, the deployment software on accessing client instantiates RLC using
the information from the OMI file. This in fact means that the Distributed OpenMI
system is started in the deployment software process. RLC connects to the remote
providing client and requests it to instantiate LC for the original model (using a registered
OMI file). After that, the providing client creates MP around LC, and registers it to RPC
subsystem in order to receive the remote method calls. The instantiation of a provided
model must be done on demand because single client can provide large number of models
and their pre-instantiation could bring significant memory overheads. After MP is
created, the accessing client receives a RPC-reference to it, which is attached to the RLC.
Now RLC is ready to proxy calls to remote LC.

In Section 4 there is more detailed information about all mentioned components
and processes.

 19

3.5. Platform

Current OpenMI release (version 1.2.0) is targeted to Microsoft .NET Framework
2.0 (an implementation of CLI, as defined in [Ecm06]). This naturally implies that
Microsoft .NET Framework 2.0 is the platform, on which the Distributed OpenMI system
should be running. Although the OpenMI Standard has earlier been released for the Java
platform as well, the support for Java has been stopped recently by OpenMI Association,
which is the responsible authority maintaining the OpenMI Standard. This is reason why
a formerly proposed Java implementation of the client has been abandoned.

 20

4. Making Linkable Components Remotable

In this section, we describe components and processes taking part in the
preparation and execution of a distributed OpenMI composition.

4.1. Remote Linkable Component

The Remote Linkable Component (RLC) is a substantial part of the Distributed
OpenMI. It implements the OpenMI’s ILinkableComponent, IPublisher, IManageState
and IDiscreteTimes interfaces, and is used in the OpenMI composition to proxy method
calls of these interfaces to original Linkable Component (LC) instantiated in a different
process, eventually on a remote computer. Additionally, RLC is the initiator of the access
to a remote model (see 5.4), and incorporates the authorization (see 4.3) and caching (see
7.2) functionality.

If the RLC is instantiated by the OpenMI deployment software as a result of
opening the OMI file (as described in 2.2), we talk about explicit instantiation. If RLC is
instantiated as a result of model linkage, we talk about implicit instantiation (see 4.6).

4.2. Model Provider

Model Provider (MP) is a wrapper around original linkable component, which
enables invocation of its methods from a remote side over RPC. For each
ILinkableComponent interface method MP has an equivalent method. In our
implementation, the IModelProviderRemote interface represents all MP’s methods which
may be called from a remote side (remotable methods).

There are more reasons why it is useful to introduce this additional layer.
Generally, for security reasons, it is not a good idea to allow the direct access to
underlying LC from RPC server subsystem. Moreover, some RPC subsystems have
restrictions about the objects receiving remote calls (e.g. in Microsoft .NET Remoting the
server objects must be inherited from MarshalByRefObject object, as described in
[Net07]). Such restrictions may not be fulfilled by a particular linkable component
implementation, which could even by legacy and cannot be changed. Additionally, MP is
useful to implement piggybacking performance optimizations (see 7.2).

 21

Note that each remote model in Distributed OpenMI is uniquely identified by
GUID (Globally Unique Identifier, as defined in [Rfc4122]), which is stored in both RLC
and MP. This GUID is for example useful for direct model linkage (see 7.1).

4.3. Authorization

Using MP, we could also supply simple an RPC-independent authorization
mechanism which prevents unauthorized remote access to provided LC. In our
implementation, each MP stores a 16 byte long unique authorization ticket (Auth). This
ticket is generated by a cryptographically safe random number generator (in our
implementation using RNGCryptoServiceProvider provided by .NET, see [Net07]).
When calling any remotable method on MP, the caller must supply exactly the same
authorization ticket in a special input parameter. If supplied ticket does not match, an
exception is thrown. During the remote model access handshake, the MP’s authorization
ticket is provided to corresponding RLC, which stores it internally and uses it for each
call to remote MP.

4.4. Object Serialization

In OpenMI there are several objects, described via interfaces, which are passed to
or returned from methods of a linkable component. These objects are state-less and
residually independent according to the OpenMI standard, thus it is useful to transfer
them by-value over the process or computer boundary.

The implementations of the objects may vary, and it is not ensured that a
particular implementation may be serialized by the RPC subsystem (e.g. in .NET
Remoting all serializable objects must be flagged with [Serializable] meta-data attribute,
as described in [Net07]). This is the reason why these objects are converted to a special
serializable representation before they are passed to the RPC subsystem. The serializable
representation stores all the information from the original object accessible via the
standard OpenMI interfaces. The values of internal attributes are lost in this process, what
is not a problem since linkable components should only provide the data using the well-
known interfaces according to the OpenMI standard.

 22

Figure 2 Serialization and deserialization of OpenMI objects

After the serializable representation of an object reaches its destination on the
remote side, a wrapper object implementing particular OpenMI interface is created from
it. This object is then passed to original LC (RLC – MP – LC way), or returned as result
of RLC method call (LC – MP – RLC way). The wrapper object emulates the state of the
original object in the way that all its properties and methods return the same values (for
same input parameters, eventually). Here we assume with respect to the OpenMI standard
that original object does not change its state in the time. The only exception is
IDataOperation object, as explained in Table 8. Note that we cannot instantiate the
original object on a remote side because its implementing type may not be present there.
The transfer of an assembly implementing specific type to a remote host is not possible
due to security reasons.

The conversion to the serializable representation and creation of the wrapper is
handled transparently by RLC and MP components. Table 8 lists objects for which this is
needed and comments the non-trivial cases:

Object Comments
IArgument
IDataOperation Problematic are Initialize and IsValid methods. Initialize method may change the

state of the instance. The resulting value of IsValid method for all combinations
of input parameters could be calculated on the original object, but for that
(number of input exchange items) x (number of output exchange items) x
(number of data operations) calls to that object would be needed, what is not
acceptable. In our implementation, the wrapper object has a reference to owning
RLC, and calls to both Initialize and IsValid methods are proxied to original LC
on the remote side. MP has DataOperationInitialize and DataOperationIsValid

 23

methods which call the corresponding methods on the original IDataOperation.
IDimension Serialized as part of IQuantity, not directly.
IElementSet
IEvent References LC which generated the event. The model GUID of that LC is used in

the serializable representation. After deserialization wrapper object uses that
GUID to find correct LC in its address space (if such exists).

IInputExchangeItem
ILink References source and target LCs. Model GUIDs are stored in the serializable

representation. After deserialization the wrapper object uses that GUID to find
correct LCs in its space (it is guaranteed they exist, see 4.6).

IOutputExchangeItem
IQuantity
ISpatialReference
ITime Itself has no properties and is just base interface for ITimeSpan and ITimeStamp.

The serializable representation stores the information about which interface is
actually implemented and after deserialization the wrapper object implements
same one(s).

ITimeSpan Serialized as ITime
ITimeStamp Serialized as ITime
IUnit Serialized as part of IQuantity, not directly.
IValueSet Base interface for IScalarSet and IVectorSet interfaces. The serializable

representation stores the information about which interface is actually
implemented and after deserialization the wrapper object implements same
one(s).

IVector Serialized as part of IVectorSet, not directly.

Table 8 OpenMI objects transported over network

The OpenMI Standard also defines several enumerations (DimensionBase,
ElementType, EventType and ValueType). All of them are based on a 32-bit integer, thus
the serialization is trivial.

4.5. Object Deposit

Although the OpenMI Standard has been developed quite recently, it is not
designed to make the remote access to linkable components simple. One of the issues is
that several LC’s (and IDataOperation) methods expect as input parameters objects
provided earlier by other methods. If just an identifier of these objects could be used, the
situation would be much easier. Passing the wrapper object instead would defy the
OpenMI Standard and could cause errors since a linkable component may depend on

 24

passing of correct objects. Table 9 lists problematic methods and the objects they need
(fixed objects):

Method Passed Object(s)
AddLink IElementSet, IQuantity, IDataOperation
IDataOperation.IsValid IInputExchangeItem, IOutputExchnageItem, IDataOperation
HasDiscreteTimes IElementSet, IQuantity
GetDiscreteTimesCount IElementSet, IQuantity
GetDiscreteTime IElementSet, IQuantity

Table 9 Fixed objects in OpenMI

In our implementation, the Object Deposit component has been developed to store
fixed objects produced by a linkable component. With each fixed object (including its
serializable representation and wrapper) there is a GUID associated. Whenever LC
produces an instance of a fixed object, MP looks into the object deposit whether that
object is already present there. If yes, the serializable representation of that object reuses
a same GUID. If not, a new GUID is generated for the object and saved to the object
deposit (together with object itself).

When a problematic method is called on RLC, it is expected that input parameters
are our wrapper objects, according to the OpenMI Standard. RLC takes GUID from the
wrapper object, and passes only that to remote MP. The MP finds the corresponding fixed
object in its object deposit, and passes it to original LC (as depicted on Figure 3).

Figure 3 Usage of object deposit

Internally, the object deposit consists of two complementary hash-tables, one has
GUID as the key and reference to the fixed object as the value, second has reference to

 25

the fixed object as the key and GUID as the value. All object deposit operations have
O(1) amortized complexity.

4.6. Model Linkage

In OpenMI, to link two models, the deployment software calls
ILinkableComponent’s AddLink method on both source and target LC. As parameters of
this method, the references to both LCs are supplied. This means that after AddLink is
called, one LC can invoke methods of other LC, and vice versa.

If one of the inter-linked models is RLC, simply the reference to RLC is supplied.
However, the AddLink method still must be called on the original LC on the remote side,
supplying a reference to some there local LC which would represent the inter-linked LC.
The natural approach solving this situation is the instantiation of RLC on remote side,
which would proxy the calls to locally inter-linked LC. In Distributed OpenMI this is
known as implicit RLC instantiation. Of course, MP has to be created around locally
inter-linked LC, enabling it to receive calls from remote side, as depicted on Figure 4.

Figure 4 Link between local and remote model

The creation of MP and implicit RLC instantiation on the remote side takes place
during the local AddLink call. Note that the remote model on a providing client side now
has the opportunity to perform callbacks to accessing client, what is one of the
requirements posed on a RPC communication protocol.

There are some special cases in the model linkage, which may be handled
different way to achieve better performance (see 7.1.2).

4.7. Event Callback

Event handling is an important part of the OpenMI standard and our system aims
to support it entirely. Each LC is producer of events, and any component implementing

 26

OpenMI’s IListener interface may subscribe to LC in order to receive its events. This
approach must be preserved for RLCs as well.

When an event listener subscribes to RLC using Subscribe method, the
subscription must also be done on the remote side. After that, if LC on the remote side
produces an event, the event must be send to RLC using a callback. The OpenMI
Standard defines that events are handled synchronously (i.e. LC may call the IListener’s
OnEvent method only during the execution of some method and the computation is
blocked until OnEvent returns, as depicted on Figure 5). This implies that our system
must handle events synchronously, as well. If we used piggybacking mechanism to pack
occurred events together with result of some later call to remote LC, the state of the
OpenMI composition would never be the same as the state when the event really
occurred. This could cause strange behavior.

Figure 5 Synchronous event handling

In our implementation, the IEventReceiver interface is used as a callback interface
for event dispatching. RLC implements this interface and registers itself to the RPC
subsystem to be able to receive event callbacks. The RPC-reference to RLC is sent to MP
during the event subscription request.

4.8. Threading

The OpenMI Standard defines that composition preparation and computation is
run within a single thread of execution. There are models and tools which depend on this
aspect of OpenMI, for example:

 27

• Graphical utilities
For example, on Microsoft Windows operating system, after a window is
created, all manipulation with it (using operating system’s handle) must be
done within the same thread of execution that created the window (described
in [Win07]).

• Legacy models
For example, industry standard river hydraulics model MIKE 11 (developed
by DHI Water, Environment and Health) utilizes several COM (Component
Object Model) components with STA (Single Thread Apartment, see
[Win07]) model. This necessitates that all method calls to LC must be done
within a single thread of execution, because the methods internally utilizes
mentioned COM components (explained in [Win07]).

Because Distributed OpenMI aims to support all OpenMI compliant models, we
must ensure that all LC methods are called within a single thread of execution. In fact,
our task is to spread single-thread call stack to multiple processes, possibly on different
computers. To achieve that, for each provided model, there must be a reserved thread on
which all calls to LC will be executed. Moreover, all LCs from a single composition on a
single client must use the same thread to enable the direct model linkage, which makes
possible that LCs call directly each other (see 7.1.2). The OpenMI Standard does not
forbid cycles in calls between LCs in the composition. In our distributed system this
means that nested RPC calls must be dispatched on a causal thread waiting for a result of
another pending RPC call.

Possible solution is to assign single thread on the providing client for all models
belonging to a same composition. MP would then marshal the LC calls to that thread. The
RLC would need to send the RPC calls asynchronously, and then grab the calling thread
so that MP could marshal the nested calls again to that thread.

Although the solution of threading issues could be implemented on the level of
RLC and MP as outlined, the idea to separate this quite general problem became more
interesting. From the discussion in Section 6 the need for implementation of a proprietary
RPC protocol arises. Our threading issues (namely reserved worker thread for dispatching
of remote method calls and execution of nested remote calls on the blocked causal thread)
may be solved transparently on the RPC level, bringing a clean and reusable solution.
The decision to go this way has been made. In the following paragraphs we describe how
threading issues have been solved using the features of new YA-RPC protocol. In Section
6.3 we explain how these features were actually implemented.

 28

4.8.1. Reserved Worker Thread

YA-RPC protocol has the possibility to assign Single Thread Worker Queue
(STW) for specific server objects registered to the RPC subsystem. When a remote
method call is received, the request is queued to STW and executed after STW thread has
nothing to do. The first idea is to associate one STW with each MP on a providing client
and perform the calls to underplaying LC directly on the STW thread. However, as
mentioned, the MPs for LCs belonging to a same OpenMI composition must share the
same thread, thus must share same STW. Unfortunately, the fact that two LCs fall into a
same OpenMI composition is first determined when they are linked together – in time
when they are already initialized and STW is already assigned. Two LCs from one
providing client, accessed even by a same client, may of course be completely
independent, thus assignment of one STW to all MPs is not possible.

In our implementation we assumed that a single OpenMI composition is identified
not by the model linkage, but by the thread under which the models are instantiated on
the accessing client. This perfectly fits our concept of a single thread call-stack spreading,
because if the OpenMI deployment software instantiates two RLCs in two different
threads, it cannot suppose that corresponding LCs on remote side shares a same thread.
When RLC is instantiated explicitly, it sends globally unique thread identifier (16-byte
GUID) together with model access request to the remote providing client. The providing
client looks whether STW for this unique identifier already exists; if yes it reuses the
STW, if not it creates a new one.

As the thread identifier we could not simply use operating system’s identifier or
handle, since it is not guaranteed to be globally unique. Our globally unique identifier is
stored in the thread local storage (abstracted using .NET [ThreadStatic] meta-data
attribute, as described in [Net07]).

Because there is some performance overhead associated with usage of STW and
not all models necessitates the execution under a single thread, the providing client have
the opportunity to turn this feature off.

4.8.2. Nested Remote Calls

Other nice feature of YA-RPC is that it has the option to track the nesting of
remote calls and execution of nested remote calls on a blocked causal thread. It means
that if the node A sends a synchronous (i.e. blocking) remote call to node B (causal call),
and node B sends another call (nested call) back to node A during the execution of the

 29

causal call, the nested call is dispatched on the A’s blocked thread (causal thread). This
feature solves completely our problems, since MP executes methods of LC directly
without additional marshaling layer.

Note that STWs for model providers are necessary only on providing clients,
accessing clients do not need them because the initiator of the computation is some
(causal) thread on the accessing client, and callbacks to its MPs are executed on that
blocked causal thread. Although, if LC on the providing client asynchronously (out of the
computation call-stack) invokes some method on accessing client’s LC, that call is
executed on a thread-pool thread, and that is perfectly correct.

 30

5. Integrating Server Model

Distributed OpenMI aims to distribute the computation in the internet wide
environment (WAN), and not only in the intranet (LAN). However, many computers and
networks in today’s internet are hidden behind firewalls and NAT (Network Address
Translation, described in [Rfc3022]). The configuration of firewalls and routers allowing
connection to protected networks may be apparently a problem, e.g. for security reasons,
or just for a user inability. In the server-less model, each providing client would have to
make configuration changes in order to use Distributed OpenMI. This could limit the
number of model providers and make the commercial expansion of the system
impossible.

This led to an idea of one central server, which would be the only place where the
firewall or router configuration settings need to be changed. Silently we pose another
requirement to selected communication protocol – the ability to perform callbacks
without the need of server-initiated connection. If the communication protocol does not
have this capability, the central server is meaningless.

Figure 6 Integrating server model

5.1. Clients Management

The presence of a central server in Distributed OpenMI brings also the possibility
to add features which would not be possible otherwise. Server may maintain the list of
clients, serve their authentication, and maintain the list of provided models… For the
communication between the clients Remote Procedure Call (RPC) has been proposed.
Natural approach how to publish these server features is also to use RPC. In our

 31

implementation, access to the server is abstracted using the IServer interface. Table 10
summarizes its methods.

Method Description
GetGuid Gets the unique identifier of the server.
GetServerInfo Gets the basic information about the server.
RegisterUser Registers the client to the server.
UnregisterUser Remove registration of the client from the server.
LogOn Performs logon to the server.
RenewAuth Renews logon on the server.
LogOff Logs off from the server.
ProvisionStart Starts the model-provision mode.
ProvisionStop Stops the model-provision mode.
ProvisionAddModel Add a provided model.
ProvisionUpdateModel Updates a provided model.
ProvisionRemoveModel Removes a provided model.
GetAllUserNames Gets the client-names of all providing users.
GetAllModelNames Gets the names of all provided models for a specific user.
GetModelInfo Gets the information about a specific provided model.
AccessModel Initiates the access to a remote model.

Table 10 Methods of IServer interface

To be able to use most of the server methods, the client must be logged on using
the client-name and password (LogOn method). If the client does not have an account, it
can create a new one using RegisterUser method. In our prototype implementation the
registration always succeeds, what in fact means that the anonymous user accounts are
allowed. One can imagine that, in the commercial environment, the registration may be
contingent on some approval (e.g. based on a received payment). Client-names must be
unique within the single server, of course. In our implementation the server persists the
list of registered users regularly to a data file.

After the registration and logon to the server, the client is able to provide access to
local models, to browse the other providing clients, browse their provided models and
also access the models. In the source code of our implementation we sometimes refer to
“client” as “user” (because clients are kind of users of the server); however in the
following text we will only use the term “client”.

Note that every Distributed OpenMI server is identified by a globally unique
identifier (16-byte GUID). This identifier is used by clients to determine that specific

 32

server is already connected. The server hostname cannot be used for this purpose,
because more hostnames may point to single host.

5.2. Remote Calls Forwarding

The most important role of the server is that it forwards remote method calls from
a one client to another. This regards the calls to Model Provider (MP) and event callbacks
to Remote Linkable Component (RLC). The forwarding works the way, that the server
registers objects with same interface (forwarder) to the RPC subsystem. When a client
sends a remote call to the forwarder, it internally sends another RPC call to the original
object on the target client. When the latter call finishes, the forwarder returns the result to
the calling client.

The forwarding of remote calls must be asynchronous – forwarder’s method must
just schedule the remote call to a target object, and return immediately. After the method
on the target object returns, the call to forwarder may also be finished. If the call to
forwarder’s method would block the thread on the server until target client object’s
method returns, a malicious client could simply “hijack” a high number of server’s
threads, what in fact is kind of Denial of Service (DoS) attack. The ability to
asynchronously forward remote calls poses a new requirement on the selected
communication protocol (see Section 6).

Figure 7 Model provider and event receiver forwarders

On the Distributed OpenMI server there are two types of forwarders: Model
Provider Forwarder (based on IModelProviderRemote interface) and Event Receiver
Forwarder (based on IEventReceiver interface). First one forwards the remote calls in the
RLC-Server-MP direction, second one in the MP-Server-RLC direction. The concept of

 33

remote call forwarding does not affect introduced concept of clients much. The clients
simply send all calls to the server, instead to the target clients.

Additionally, in our implementation, during the forwarding the server checks the
authorization ticket for the model provider (described in Section 4.3) and tracks the event
subscription process in order to forward the events only where needed (see Section 7.3).

5.3. Model Provision

Before the client can enter the provision mode, it must logon to the server. Using
IServer interface’s ProvisionStart method the client enters the provision mode. As
parameter of this call the client must supply RPC-reference to IProvisionCallback
callback, which is used to initiate access to the model on demand.

The providing client process then waits for incoming requests. The client
periodically calls server’s RenewAuth method to refresh the logon. This is necessary
since the logon timeouts after a period of time to prevent dead clients to be considered
alive.

5.4. Model Access

After explicit instantiation of RLC in the OpenMI deployment software’s process,
Distributed OpenMI connects and logons to the server using credentials stored in
corresponding OMI file. After that, RLC calls server’s AccessModel method. Server finds
requested providing user, and using callback requests it to provide the access to the
model (i.e. calls IProvisionCallback interface’s ProvideModel method). RPC-reference to
event receiver forwarder is sent as part of this request.

As described in Section 3.4, the providing client instantiates and initializes the
linkable component and creates a MP for it. Reference to MP is sent back to server as a
result. The server then creates a model provider forwarder and sends its RPC-reference
back to the accessing client as a result. Now the client is able to call the methods of
original LC on a remote side, and the event system is ready to work.

 34

6. Communication Protocol

Selection of a right RPC communication protocol was one of the biggest
challenges during the development of Distributed OpenMI. The architecture of the
system poses very specific requirements on the selected protocol. In this section we
compare available protocols with respect to our requirements, and explain why we
decided to implement a proprietary protocol.

6.1. Requirements

The following list summarizes all the requirements posed on the communication
protocol by our Distributed OpenMI concept. There are other requirements not explicitly
pronounced, which we silently consider as a matter of course (e.g. reliable delivery,
stable release, synchronous method calls, serialization of complex data types …etc).

• Callbacks on client initiated connection
As mentioned many times, the server must be able to invoke methods on the
clients. The client-server connection must be client-initiated to deal with
firewalls and NAT (explained in Section 5).

• Asynchronous remote calls and server methods dispatch
The RPC must have opportunity to invoke a remote method call without the
need of blocking the calling thread. When the remote method finishes, a
supplied callback has to be called by the RPC subsystem. Similarly, a server
object must have the opportunity to return immediately when its method is
called and be able to notify the RPC subsystem about the completion and
return value. These two features are necessary for the asynchronous remote
call forwarding on a server (as described in Section 5.2).

• Free availability for Microsoft .NET Framework
Distributed OpenMI may become either commercial or open source
software. In both cases the dependence on a commercial RPC protocol
would be very unpleasant. An open source or SDK library is the desired
choice, for Microsoft .NET Framework of course.

• High performance
The distribution of OpenMI computation must have as small performance
overhead as possible, and RPC must be fast enough to achieve this

 35

objective. Note that Distributed OpenMI may also be used in intranet
environment, where network latency is insignificant – here the performance
of the RPC subsystem may be a bottleneck.

• Internet wide usability
The clients connected to the server may be in different networks of internet.
This limits the choice of RPC’s underlying protocol to widely extended and
supported TCP/IP protocol.

6.2. Protocol Comparison

In Table 11, we list the most widely used RPC protocols, and show whether they
implement the necessary features.

Callbacks
Asynchronous
call forwarding

Availability
High
performance

Internet wide
usability

CORBA [Omg04]
DCOM [Dcom98]
Java RMI [Java03]
.NET Remoting [Net07]
Web services [Web04]
XML-RPC [Xml99]
FastRPC [Fast]
ONC RPC [Rfc1831]
DCE/RPC [Dce97]

Table 11 The comparison of RPC protocols

The summary is that for our purpose no existing RPC protocol is available. This
led to the decision to implement a proprietary protocol, which would incorporate all the
necessary features. Additionally, the proprietary protocol enables us to transparently
solve threading issues on the RPC level (as described in Section 4.8) and is ready for a
future extension (e.g. Java implementation, encryption, transparent failover …etc). The
new protocol was named YA-RPC.

6.3. YA-RPC

YA-RPC stands for Yet Another Remote Procedure Call. It is a simple binary
communication protocol which has been developed from the scratch. As underlying
transport protocol, the Transmission Control Protocol (TCP) is used (described in

 36

[Rfc793]). The choice of TCP was very natural – it is simply the most widely supported
internet protocol with reliable stream delivery. The remote method calls and return values
are packed into messages, which are transported using TCP over the network. The first
implementation of YA-RPC has been done for Microsoft .NET Framework.

In this section, we only show the most important features of YA-RPC protocol.
The technical details are beyond the scope of this document and may be found in the YA-
RPC documentation.

6.3.1. Server Objects and Methods

YA-RPC uses object-oriented approach, i.e. remotable methods are defined on
objects (server objects). Each server object must implement IYaRpcRemotable interface.
Before an object may receive the remote method calls, it must be registered to the YA-
RPC subsystem. The server objects are identified by a globally unique identifier (16-byte
GUID), which is supplied during the registration. The methods of server objects are
identified using 32-bit signed integer. When a client performs the remote call, it must
provide both the object GUID and method ID. The server object methods may have
unlimited number of input parameters, and unlimited number of return values.

During the dispatch of the remote call, the YA-RPC subsystem first calls
IYaRpcRemotable’s interface GetMethodDefinition method on the server object. Based
on the result of this method, either the ExecuteMethod or BeginExecuteMethod method is
later called on the server object to perform the job. Additionally, GetMethodDefinition
method is used by the YA-RPC subsystem to determine the types of input parameters for
a method. These types are used to deserialize the message, so that the parameters may be
supplied to the method in fair form.

To receive the remote calls, the server must either be listening on a specific
network interface and TCP port, or it must be connected to another remote host.

6.3.2. Remote Calls

To perform the remote call over YA-RPC, the caller must have open connection
to remote host, server object GUID, method ID and the array of method parameters,
whose types must exactly match the types defined by GetMethodDefinition method on
the server, so that these parameters are deserialized correctly. Moreover, the caller
supplies array of types defining the return values of the method. These types are used to
deserialize the return message received from the server after remote call finished. Of
course, the return values of the remote method must exactly match these types.

 37

The types of parameters and return values supplied by the server object and the
caller define the RPC communication interface. For this purpose, other RPC protocols
use more user-friendly approaches like Interface Definition Language (IDL, described in
[Omg04]), which however may be quite complicated to implement. Fortunately, YA-
RPC provides helper methods which automatically generate the method definitions for a
supplied type (implemented via .NET Reflection).

The remote call can be either synchronous (i.e. blocking) or asynchronous. In the
second case, the caller supplies a callback delegate which is called after the remote call
finishes (or fails). The caller can also specify a timeout for the remote call, after which
the unfinished call fails.

As described earlier, remote calls may be sent both from the client to the server,
and from the server to the client. In this context, the client is understood as the initiator of
the connection.

6.3.3. Serialization

YA-RPC serializes objects to a binary representation with little-endian byte order.
Common data types (Boolean, Byte, SByte, Int16, UInt16, Int32, UInt32, Int64, UInt64,
Single, Double, Decimal, String, DBNull, DateTime, Guid) and arrays of such types (and
arrays of arrays, recursively) are serialized automatically. The serialization of complex
data types is also possible, however these objects must implement IYaRpcSerializable
interface to control the serialization process by themselves. Generally, the serialization
process is platform independent, thus future migration to Java and potentially other
platforms is possible.

6.3.4. Asynchronous Remote Calls Forwarding

YA-RPC supports both asynchronous remote calls, and asynchronous server
methods dispatch. These features are necessary for an implementation of asynchronous
remote call forwarding.

As discussed earlier in this chapter, the remote call can be send asynchronously.
Similarly, the server object may using IYaRpcRemotable interface’s GetMethodDefinition
method specify, that specific method is asynchronous. In such case the YA-RPC
subsystem calls BeginExecuteMethod to invoke the method. After method’s job is
finished, a supplied callback must be called by the server object in order to finish the
remote call in YA-RPC.

 38

6.3.5. Performance

During the development of YA-RPC, the performance was one of the key aspects
taken in the mind. Following list summarizes used methodologies which helped with
achievement of this goal:

• Low-level TCP protocol
• Binary serialization
• Asynchronous socket operations

For the network subsystem manipulation, our implementation uses socket
interface provided by .NET Framework libraries, which internally utilizes
Windows Sockets (described in [Net07], [Win07]). With Windows Sockets
the best performance, throughput and stability is achieved using the
asynchronous model, because it internally utilizes Windows NT I/O
Completion Ports (IOCP), as described in [Jon02]. YA-RPC adopts this
model.

• Intelligent growth and shrink of receive buffer
• Remote call forwarding with no additional context switch

When dispatching an asynchronous remote call, the invocation of the
asynchronous method (i.e. the send of forwarded remote call) is done
directly in the IOCP thread, thus no additional context switch is needed.
This is a desired behavior for high performance server applications.

• Multiple listening sockets
The server listens on several sockets at the time, with pre-prepared
accepting sockets. This is useful in order to serve high number of newly
opened simultaneous connections. The number of listening sockets is
configurable.

6.3.6. Execution of Nested Calls in Causal Thread

If a client invokes synchronously remote call on a server (causal call), and the
server sends a callback to the client as part of the execution of that call (nested call), the
callback is dispatched on the client’s blocked thread (causal thread). Naturally, during
execution of one nested call other remote call may be send … and so on. It is desired that
both asynchronous remote call and asynchronous call dispatch preserve this behavior (i.e.
remote call forwarding will not break this approach).

 39

In YA-RPC each remote call is identified using 16-byte GUID. The message
representing the remote call contains the GUID of the causal call send from that host, if
such exists. When dispatching the remote call, the YA-RPC subsystem looks whether
there is some pending synchronous call with that GUID, and if so, uses the blocked
thread to execute the call.

Crucial is how to obtain the GUID of the causal call. Each YA-RPC host must
track the information, which remote call caused the invocation of other remote call. In the
situation where communication between only two YA-RPC hosts is done is simple – in
fact we only need to acquaint the thread dispatching the remote call with the GUID of
that call. This GUID must be saved to some location accessible only by the dispatching
thread – in YA-RPC we used Windows Thread Local Storage via .NET Framework
[ThreadStatic] attribute for this purpose (described in [Net07] and [Win07]).

Figure 8 Execution of nested method calls in YA-RPC

Unfortunately, if the communication is done between more than two hosts, the
situation becomes quite more complicated. An example of such case is depicted on the
Figure 8. Because the dispatch of the call GUID3 on the server is nested to the call
GUID2, it is executed on server’s thread which waits for result of the call GUID2. During
the dispatch of call GUID3, other remote call GUID4 is sent to client A. This call is

 40

nested to the call GUID1, but the thread local storage would say GUID3 is the causal call.
To avoid this problem, each host must track more information than only “GUID of
currently dispatched call”. For this purpose YA-RPC uses special data structure named
Call Stacks. This structure contains remote-call-stack for each group of nested remote
calls. The each record of such call-stack contains remote call GUID and the reference to
connection on which the call has been made. The remote call stack tracked by each host
is depicted on the bottom part of the sequence diagram. To find the GUID of the causal
call, the YA-RPC only needs to iterate thru the call-stack in bottom-down order, and find
the topmost call from the connection, where nested call should be sent.

Note that each host tracks only remote calls between direct neighbors and not all
remote calls in a whole distributed system. Such kind of tracking would be needed in case
we wanted to support execution of nested calls in a causal thread for cyclic remote call
graphs. Distributed OpenMI uses only one central server, ensuring acyclic topology of
the remote calls, so currently there is no reason why to implement such feature.

6.3.7. Single Thread Worker Queue

The server object has opportunity to specify a worker on which the dispatched
remote method call should be executed. This may be done using IYaRpcRemotable
interface’s GetMethodDefinition method. The worker is represented using IYaRpcWorker
interface.

YA-RPC currently ships with only one implementation of this interface –
YaRpcSingleThreadWorker (single thread worker, STW). Each instance of this worker
has one thread reserved for the work. When STW is requested to execute some work
item, it internally queues that work item. Queued items are executed on the underlying
thread in the FIFO order.

6.3.8. Proxy and Stub Helpers

To simplify the usage of the YA-RPC subsystem, there are two generic abstract
classes: YaRpcProxy<T> and YaRpcStub<T>. The generic type parameter T identifies
the type which is used as RPC communication interface (i.e. the method definitions are
read from it). The remotable methods of that type must be marked with [YaRpcMethod]
.NET meta-data attribute.

To implement a synchronous proxy class to a remote server object, one can inherit
the proxy class from YaRpcProxy<T>. The implementer must then provide the
implementations for proxy methods, which actually send the remote call. To simplify that

 41

process YaRpcProxy<T> provides some helper methods. One can note that this is not the
most convenient way how to get a proxy object, since .NET Framework provides the
opportunity to dynamically generate the IL code (defined in [Ecm06]), which might be
used to generate the implementations of proxy methods. Unfortunately, the generation of
dynamic type is quite complex to implement and was beyond the scope of our work.
However, it is possible to extend YA-RPC with this feature in future.

Analogously, to implement server object, the implementer may inherit server
object from YaRpcStub<T> class. Thereafter, when a remote call is dispatched by that
object, YaRpcStub<T> uses internally .NET Reflection to find the corresponding method
in derived class, and invokes it automatically.

 42

7. Performance

The network communication is surely the main factor affecting the performance
of Distributed OpenMI. Since the amount of data transferred between the Linkable
Components (LC) and external tools typically is not big, and current network subsystems
have high throughput, the main bottleneck for the performance is the network latency.
Generally, the only method how to fight against the network latency is to limit the
number of network roundtrips. In this section we describe performance optimization
techniques adopted by Distributed OpenMI.

7.1. Direct Model Linkage

There are two special cases, where it would be very inefficient to adhere the
linkage approach described in Section 4.6.

7.1.1. Server-side Model Linkage

If the accessing client links two remote models provided over same server, i.e.
adds link between two Remote Linkable Components (RLC), by definition the linkage
process would create Model Provider (MP) around both RLCs, create two new
forwarders on the server for them and create RLC on both remote providing clients, so
they can call each other (as described in Section 4.6). We can see that this is very
inefficient since every call between inter-linked remote models must be transmitted over
the accessing client.

Figure 9 Server-side direct model linkage

 43

As shown on Figure 9, Distributed OpenMI solves this special case differently.
When link between two RLCs is added, Distributed OpenMI still creates MP over each
RLC (necessary for case RLCs points to different servers), but when the server is going
to create the forwarder for a particular MP, it looks first whether there is not already a
forwarder for that model, and if so, reuses it. The effect is that calls between the models
are now transmitted directly to the providing client.

7.1.2. Client-side Model Linkage

Similarly, when the link between two remote models provided by the same client
(over the same server) is added, by default the Distributed OpenMI would create MPs
over corresponding RLCs on the accessing client, create new forwarders for them on the
server and create RLCs on the providing client. After that, all the communication
between inter-linked models would be transmitted over the accessing client.

Figure 10 Client-side direct model linkage

Distributed OpenMI solves this special as follows. Before the client creates a
RLC for some remote model, it first looks whether that RLC would not correspond to
some local LC. If so, no RLC is created and the LC is used directly. This means that the
models may now call their methods directly, without any assistance of Distributed
OpenMI.

7.2. Caching and Piggybacking

The linkable component has several methods and properties that should not
change the state of the component, according to the OpenMI Standard, and are used quite
often. These methods are candidates for the caching and/or piggybacking. The caching
may simply be implemented on the RLC level, the piggybacking necessitates the

 44

cooperation between RLC and MP, so that during one method call other values produced
by LC are transferred to RLC and cached there.

Table 12 lists methods and properties of a linkable component and discusses the
caching and piggybacking opportunities.

Method/property Comments
Initialize Called only once to initialize the LC.
ComponentID
ComponentDescription
ModelID
ModelDescription
TimeHorizon

These properties should not change the internal state of LC and should
get the same value during whole lifetime of LC (after Initialize is
called), thus it is desirable to piggyback them all together with a result
of Initialize method or when one of the properties is read (for case the
cache has been invalidated – explained below).

InputExchangeItemCount
GetInputExchangeItem
OutputExchangeItemCount
GetOutputExchangeItem

Methods/properties should not change the internal state of LC. The
exchange items are often read all at a time, so it is desirable to transfer
them all together. On the other hand, iteration thru all exchange items
may be expensive even if done locally. This naturally implies that the
exchange items should be piggybacked and cached only if they are
needed, i.e. when one of the method/properties is called and
input/output handled separately.

AddLink
RemoveLink

Methods change the internal state of LC.

Validate Method should not change the state of LC and may be called multiple
times, thus caching of a resulting value is desirable. Unfortunately, the
validation can be expensive operation, thus piggybacking with other call
is not possible. The cached value must be invalidated whenever the state
of LC changes.

GetValues Performs the computation step; changes the internal state of LC.
However, the latest computed value may be cached, since it may be
reused several times. The cached value must be invalidated whenever
the state of LC further changes, because validation result may also
change.

EarliestInputTime Should not change the internal state of LC. Typically, the value of this
property changes only after GetValues is called. This implies that
piggybacking together with a result of GetValues will be useful. If the
cached value has been invalidated, the value is read directly and cached
thereafter.

Prepare
Finish
Dispose

Methods change the internal state of LC, called maximum once during
lifetime of LC.

GetPublishedEventTypeCount Should not change the internal state of LC. Published event types are

 45

GetPublishedEventType typically read all at a time, thus it is desirable to piggyback them all
together when they are needed, i.e. when some of the methods is called.

Subscribe
UnSubscribe
SendEvent

Methods change the internal state of LC.

KeepCurrentState
RestoreState
ClearState

Methods change the internal state of LC, called rarely.

HasDiscreteTimes
GetDiscreteTimesCount
GetDiscreteTime

Methods should not change the internal state of LC, and should return
the same values during whole lifetime of LC. Typically, for a one
combination of Element Set and Quantity all discrete times are read at a
time. It is not possible to predict the requested combination of Element
Set and Quantity, thus the piggybacking must be done for concrete
combination first when one of these methods is called. Caching of the
values for more than one combination is not useful, since typically the
values are read only once during the computation.

Table 12 Caching and piggybacking for linkable component methods and properties

The usage of caching and piggybacking may cause unexpected side effects in the
case some method or property unexpectedly changes the internal state of the linkable
component. To cope with that, Distributed OpenMI has the ability to adjust the caching
or even turn it completely off. It is also for example possible to force Distributed OpenMI
to invalidate the cache after state of LC is expected to change.

7.3. Intelligent Event Forwarding

As described in Section 4.7, the event receiver callback is associated with each
RLC. In our integrating server model, the events produced by original LC are first send to
a forwarder on the server, and then forwarded to all attached RLCs. The simple idea
behind intelligent event forwarding is that not all RLCs do listen to a specific event types,
thus some events do not need to be send to all RLCs. To support this behavior, the server
must track which RLC called ILinkableComponent’s Subscribe and UnSubscribe method
– the model provider forwarder is the right place where to do it.

Moreover, RLC sends the Subscribe/UnSubscribe calls only when it is really
necessary. For example, if there are two subscribers for a same event type, it is sufficient
to call Subscribe method only once, since RLC may broadcast the event to all subscribers
locally.

 46

One can see that events increase the number of network roundtrips in Distributed
OpenMI heavily, thus in a production system it is desirable to limit the number of event
subscriptions.

 47

8. Deployment

The Distributed OpenMI system is divided into several software components. In
this section we will describe these components, their installation and software
prerequisites.

All components were developed in C# language and they are primary intended for
the Microsoft Windows operating system with Microsoft .NET Framework 2.0 installed.
The components may possibly run on other operating systems, using MONO framework
(developed in [Mono]) or DotGNU (developed in [DotGnu]), because our
implementation is generally platform independent. However at the time of the
development (Q1/2007), the support for .NET 2.0 and necessary libraries has been fully
implemented neither by MONO nor by DotGNU. These frameworks are currently the
only opportunity how to run the existing system on Linux. This implies that only
Microsoft Windows is currently “officially” supported by Distributed OpenMI. After
MONO finishes the necessary support for .NET 2.0 (planned to Q3/2007), there is
nothing in the way to migrate our system to Linux and potentially other operating
systems.

8.1. Client

Both providing and accessing clients are encapsulated in the
DHI.OpenMI.Distributed.Client.exe assembly. To use this assembly, the OpenMI
Standard software must be installed on the local computer.

To start the accessing client, the type implementing RLC
(DHI.OpenMI.Distributed.Client.RemoteLinkableComponent, contained in the client
assembly) must be explicitly instantiated and RLC thereafter initialized using
ILinkableComponent’s Initialize method – this is typically done via the OMI file using
the standard OpenMI deployment software.

To start the client front-end application, simply run the
DHI.OpenMI.Distributed.Client.exe assembly. The application snapshot is depicted on
Figure 11.

 48

Figure 11 Distributed OpenMI client application

Using the client application, the user is able to:
• Manage the connections to Distributed OpenMI servers
• Browse the providing clients connected to the server
• Browse the provided models
• Display the properties of a provided model
• Generate the OMI file to access a remote model
• Provide own local models

When a user provides some models, the client application must keep running and
the connection to server must remain open. All settings done in the client application may
be saved to a XML file (by default, it has DMI extension), and reused later. To
automatically open such file, we can add path to it as a single command-line argument
when starting the client application. This may be useful for example to automatically start
the providing client on a computer startup.

8.2. Server

The server is encapsulated in DHI.OpenMI.Distributed.Server.exe assembly. It
may either run as standalone application or may be installed as Windows Service. For the
installation of the service and configuration of the server, special tool has been
developed.

 49

Figure 12 Distributed OpenMI server configuration tool

To run this tool, simply run DHI.OpenMI.Distributed.Server.exe with no
command-line options. The /help command line option will display help dialog
describing other start-up options. Note that both server and the configuration tool do not
need the OpenMI Standard to be installed on the computer.

8.3. Tester

For testing of Distributed OpenMI the DHI.OpenMI.Distributed.Tester.exe
application has been developed. This application is able to prepare an OpenMI
composition of remote models provided by various clients over various servers. The
exact definition of the composition is supplied using command-line arguments. The
application performs following tasks:

• Automatically start the requested server processes
• Automatically start the providing client processes, and instruct them to

connect to corresponding servers and provide the requested models
• Generate OMI files for remote models
• Create the standard OpenMI composition consisting of both remote and local

models, add a trigger and link models appropriately
• Save the OpenMI composition to OPR file, so it may be opened by OmiEd (a

standard OpenMI deployment application)
• Run the composition, if requested

 50

All remote and local models taking part in the composition are special linkable
components (DHI.OpenMI.Distributed.Tester.TestLinkableComponent), which reside in
the DHI.OpenMI.Distributed.Tester.exe assembly. These LCs tests various aspects of
Distributed OpenMI, for example:

• Check LC methods are called from same thread
• Check LC methods are called in correct order
• Check client-side direct model linkage
• Test event sub-system

To run the tester application, the OpenMI Standard software must be installed on
the computer.

8.4. User Documentation

Because the Distributed OpenMI system is currently a prototype, there is still no
user documentation available. However, it will be delivered in the future, and will mainly
focus on:

• Installation and usage of the client application
• Installation and configuration of the server
• Optimization of performance
• Solution of possible problems (caused e.g. by caching mechanism)

 51

9. Conclusion

The Distributed OpenMI system has shown that it is possible to seamlessly
distribute the OpenMI composition of any OpenMI-compliant models to different
computers. Distributed OpenMI is a system, which is simple to configure and to use, and
thus may be adopted by users without advanced computer skills. Current system is
reliable in the way that it may be used for real-world projects.

Moreover, we proved that it is possible to spread single-thread call-stack to
several computers, even in the integrating server environment, whilst ensuring that nested
calls are executed on a same thread as the causal calls. This feature is necessary to
guarantee high performance thanks to low thread utilization and is of a vital importance
for various software components. The classical distributed computing philosophy is
“distribute the data to the computers, and let each one to compute locally”, we say “leave
the data locally, and distribute the computation”. Thanks to the independence of YA-RPC
protocol, our novel approach may be reused by other software systems.

However, current Distributed OpenMI system does not incorporate all the
functionality proposed in the specification of this thesis. The following list summarizes in
points all parts of the specification and discusses how they are realized in current
Distributed OpenMI:

• System capable of linking OpenMI models across computers
Completely fulfilled

• Hub servers for Windows and Linux
As described in Section 8, the server software runs on Microsoft Windows
using Microsoft .NET Framework platform. .NET Framework 2.0 is
currently completely supported neither by MONO framework nor DotGNU,
what is the presumption to run the existing server on Linux. The Java
implementation of the server would necessitate providing Java
implementation of the YA-RPC protocol, which was beyond the scope of
this thesis. In addition, this might be a useless work because the release of
MONO 2.0 is planned to Q3/2007.

• The clients providing local models
Completely fulfilled

• Transparent access to remote models for legacy OpenMI software
Completely fulfilled

 52

• Clients for .NET and Java
As described in Section 8, the client software runs on Microsoft Windows
using Microsoft .NET Framework. The Java client has not been
implemented, because OpenMI Association stopped the support for Java in
the OpenMI Standard. After that, there was no reason why to implement a
Java client.

• Strong encryption, privileges management (optionally)
These features are not implemented, because they are unnecessary for the
current non-commercial release of Distributed OpenMI. Even if they would
be implemented, an additional work is still needed to suit the needs of a
commercial environment – Section 10 gives more details about that. This
led to a decision to skip the implementation of these features.

• Transparent communication failover (optionally)
The natural place for integration of the communication failover is the RPC
protocol layer. Because during the development of the system the necessity
to implement a proprietary communication protocol arisen (as described in
Section 6), we would need to implement the failover capability there. The
amount of work for that would be enormous, and thus has been skipped.
However, YA-RPC may be extended with this feature later.

• Recommendations for true parallel computing (optionally)
The recommendations for an asynchronous computation have not been made
because the OpenMI Association does not give an indication that such
functionality will ever be adopted by OpenMI.

• Reliable system usable in real situations
Completely fulfilled

• Demonstration on a real scenario
The Distributed OpenMI system has been tested on real setups of MIKE 11,
MOUSE and EPANET modeling software (provided by DHI Water,
Environment and Health). Unfortunately, both the modeling software and
setups are proprietary software, which could not be attached to the thesis.
However, the statement of DHI, a.s., the company who carried out the tests,
is attached to the thesis in a separate paper.

All decisions to not implement specific proposed features have been consulted
with the supervisor of the thesis.

 53

10. Future Work

Although Distributed OpenMI delivers a system usable in real-world projects,
there are still some features, which need to be implemented before the commercial
expansion of the software, i.e. before the software may be shipped as a boxed product.
These features are:

• Privileges
Privileges enable the users to specify, which clients may access their
models, whether additional arguments may be supplied to initialization of a
linkable component, whether users may see exceptions generated by
particular model…etc.

• Client administration tool on server
The tool for administration of clients on the server, which would be used to
manually control the registration (e.g. based on a received payment), remove
the server clients…

• Encryption
In a production environment, the model data are often not public, or even
may be confidential (e.g. simulations for military purposes). Since the data
may be transferred over unsecured networks, potential attacker may sniff the
communication between the clients and the server. The only sufficient
protection is the encryption of the communication, most likely implemented
on the YA-RPC protocol layer.

• Transparent network failover
Internet consists of networks which differ in the quality a lot. TCP is
connection oriented protocol, what unfortunately means that if the network
does not transmit TCP packets for a period of time, the TCP connection may
be lost. If the connection between any client and corresponding server
participating in the Distributed OpenMI composition is lost, even for small
period of time, the whole simulation fails. The solution is to implement a
failover mechanism, most likely on the YA-RPC level, which would simply
try to reconnect to the server for a specific period of time in case TCP
connection has been accidentally lost. If the re-connection succeeds, the
state of the remote calls must also be restored and lost remote calls must be
re-sent.

 54

• Java client in case OpenMI Association decides to support Java again
Java platform may be supported by OpenMI in the future again, what may
request the creation of a Java client. It may be possible to re-compile
existing .NET assemblies to Java byte-code automatically without much
effort (e.g. using IKVM.NET framework, [Ikvm]).

 55

11. References

[Bir83] A.D. Birrell, B.J Nelson (1983): Implementing Remote Procedure Calls,
XEROX CSL-83-7.

[Dce97] The Open Group (1997): DCE 1.1: Remote Procedure Call
[Dcom98] The Open Group (1998): The COM/DCOM Reference, Documentation for

ActiveX Core Technology
[DotGnu] DotGNU Project, http://www.gnu.org/software/dotgnu/
[Ecm06] ECMA International (2006): Standard ECMA-335, Common Language

Infrastructure (CLI)
[Fast] The FastRPC protocol documentation, http://fastrpc.sourceforge.net/
[Omi05] Peter J.A. Gijsbers, R. Brinkman, J.B. Gregersen, S. Hummel, S.J.P. Westen

and others (2005): The org.OpenMI.Standard interface specification.
[Ikvm] IKVM.NET Project, http://www.ikvm.net/
[Java03] Sun Microsystems, Inc. (2003): JavaTM 2 Platform, Standard Edition,

v1.4.2, API Specification
[Jon02] A. Jones, J. Ohlund (2002): Network Programming for Microsoft Windows,

Second Edition
[Mono] The MONO Project, http://www.mono-project.com/
[Net07] Microsoft Corporation (2007): .NET Framework Reference
[Omg04] Object Management Group, Inc. (2004): Common Object Request Broker

Architecture: Core Specification
[Rfc793] Information Sciences Institute, University of Southern California (1981):

RFC 793 Transmission Control Protocol
[Rfc1831] R. Srinivasan (1995): RPC: Remote Procedure Call Protocol Specification

Version 2
[Rfc3022] P. Srisuresh, K. Egevang (2001): RFC 3022 Traditional IP Network Address

Translator (Traditional NAT)
[Rfc4122] P. Leach, M. Mealling, R. Salz (2005): RFC 4122 A Universally Unique

IDentifier (UUID) URN Namespace
[Xml99] Dave Winer (1999): XML-RPC Specification
[Web04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D.

Orchard (2004): Web Services Architecture, W3C Working Group Note
[Win07] Microsoft Corporation (2007): Windows API Reference

 56

http://www.gnu.org/software/dotgnu/
http://fastrpc.sourceforge.net/
http://www.ikvm.net/
http://www.mono-project.com/

	1. Overview
	2. Introduction to OpenMI
	2.1. Linkable Component
	2.2. OMI File
	2.3. Model Linkage
	2.4. Computation
	2.5. Events
	3. Distribution of Computation
	3.1. Concept
	3.2. Use Cases
	3.3. Remote Procedure Call
	3.4. Model Provision and Access
	3.5. Platform

	4. Making Linkable Components Remotable
	4.1. Remote Linkable Component
	4.2. Model Provider
	4.3. Authorization
	4.4. Object Serialization
	4.5. Object Deposit
	4.6. Model Linkage
	4.7. Event Callback
	4.8. Threading
	4.8.1. Reserved Worker Thread
	4.8.2. Nested Remote Calls

	5. Integrating Server Model
	5.1. Clients Management
	5.2. Remote Calls Forwarding
	5.3. Model Provision
	5.4. Model Access

	6. Communication Protocol
	6.1. Requirements
	6.2. Protocol Comparison
	6.3. YA-RPC
	6.3.1. Server Objects and Methods
	6.3.2. Remote Calls
	6.3.3. Serialization
	6.3.4. Asynchronous Remote Calls Forwarding
	6.3.5. Performance
	6.3.6. Execution of Nested Calls in Causal Thread
	6.3.7. Single Thread Worker Queue
	6.3.8. Proxy and Stub Helpers

	7. Performance
	7.1. Direct Model Linkage
	7.1.1. Server-side Model Linkage
	7.1.2. Client-side Model Linkage

	7.2. Caching and Piggybacking
	7.3. Intelligent Event Forwarding

	8. Deployment
	8.1. Client
	8.2. Server
	8.3. Tester
	8.4. User Documentation

	9. Conclusion
	10. Future Work
	11. References

